Self - adjoint extensions and Signature Change

نویسنده

  • I. L. Egusquiza
چکیده

We study the selfadjoint extensions of the spatial part of the D'Alembert operator in a spacetime with two changes of signature. We identify a set of boundary conditions, parametrised by U (2) matrices, which correspond to Dirichlet boundary conditions for the fields, and from which we argue against the suggestion that regions of signature change can isolate singularities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Positive Self-adjoint Extensions and Its Application to Ordinary Differential Operators

A new characterization of the positive self-adjoint extensions of symmetric operators, T0, is presented, which is based on the Friedrichs extension of T0, a direct sum decomposition of domain of the adjoint T ∗ 0 and the boundary mapping of T ∗ 0 . In applying this result to ordinary differential equations, we characterize all positive self-adjoint extensions of symmetric regular differential o...

متن کامل

The Dirac Hamiltonian in an Aharonov - Bohm gauge field and its self - adjoint extensions Kazuhiko ODAKA ∗ and Kazuya SATOH

By using the spherical coordinates in 3+1 dimensions we study the self-adjointness of the Dirac Hamiltonian in an Aharonov-Bohm gauge field of an infinitely thin magnetic flux tube. It is shown that the angular part of the Dirac Hamiltonian requires self-adjoint extensions as well as its radial one. The self-adjoint extensions of the angular part are parametrized by a 2 × 2 unitary matrix. ∗e-m...

متن کامل

Resolvents of self-adjoint extensions with mixed boundary conditions

We prove a variant of Krein’s resolvent formula for self-adjoint extensions given by arbitrary boundary conditions. A parametrization of all such extensions is suggested with the help of two bounded operators instead of multivalued operators and selfadjoint linear relations.

متن کامل

On the Aharonov-casher Formula for Different Self-adjoint Extensions of the Pauli Operator with Singular Magnetic Field

Two different self-adjoint Pauli extensions describing a spin-1/2 two-dimensional quantum system with singular magnetic field are studied. An Aharonov-Casher type formula is proved for the maximal Pauli extension and the possibility of approximation of the two different self-adjoint extensions by operators with regular magnetic fields is investigated.

متن کامل

Self-adjoint Extensions of Restrictions

We provide, by a resolvent Krĕın-like formula, all selfadjoint extensions of the symmetric operator S obtained by restricting the self-adjoint operator A : D(A) ⊆ H → H to the dense, closed with respect to the graph norm, subspace N ⊂ D(A). Neither the knowledge of S∗ nor of the deficiency spaces of S is required. Typically A is a differential operator and N is the kernel of some trace (restric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995